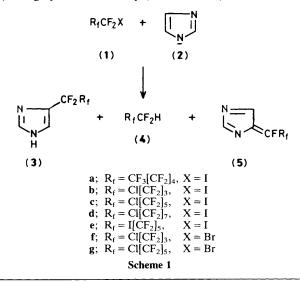
Studies on Fluoroalkylation and Fluoroalkoxylation. Regioselective Synthesis of Fluoroalkylated Imidazoles


Qing-Yun Chen* and Zai-Ming Qiu

Shanghai Institute of Organic Chemistry, Academia Sinica, 345 Lingling Lu, Shanghai, China

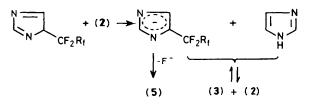
High yields of 4-fluoroalkylimidazoles are obtained regioselectively by the reactions of an imidazole anion and fluoroalkyl iodides or bromides under mild conditions; an *S*_{RN}1 mechanism is proposed.

Organofluorine chemistry has found increasing applications in medicine and biochemistry,¹ heteroaromatic compounds often being involved. However, few methods for the direct fluoroalkylation of heteroaromatic rings have been reported.² We have recently synthesized 2-fluoroalkylpyrroles by the reactions of fluoroalkyl iodides with pyrrole in the presence of copper,³ and we now report a convenient and efficient regioselective synthesis of 4-fluoroalkylimidazoles.⁴

Treatment of sodium imidazolide (2) with fluoroalkyl iodides or bromides (1) gave the 4-fluoroalkylated products (3) in high yields in one step (see Scheme 1).[†]

 \dagger A typical procedure is as follows. To the solution of (2) in dimethylformamide (DMF), the fluoroalkyl iodide or bromide was added in one portion, at 10 °C, under laboratory light. The mixture was stirred under N₂ and became red after a few minutes. Stirring for several hours and work-up gave the product (3) in high yields (Table 1).

The conversion was mainly dependent on the ratio of reactants, going to completion when (1) and (2) were in a 1:3 ratio, but only 46.5% of fluoroalkyl iodide being converted for (1): (2) = 1:1. It was also found that the extent of conversion of fluoroalkyl bromides [(1f) and (1g)] was lower than that of the iodides [(1a)-(1e)], possibly owing to the slower radical chain transfer of the bromide.


The reaction could be partially suppressed by *p*-DNB (20 mol%) or hydroquinone (20 mol%). The conversion also

$$R_1CF_2X + \prod_{N} N \longrightarrow R_1CF_2^* + X^- + (2)^*$$

$$R_{f}CF_{2}^{*} + (2) \longrightarrow \bigvee_{r=1}^{N} CF_{2}R_{f}$$

$$\downarrow^{(1)}$$

$$N \longrightarrow CF_{2}R_{f} + R_{f}CF_{2}^{*} + X^{-1}$$

 $R_f CF_2^{\bullet} + H^{\bullet} \longrightarrow R_f CF_2 H$

Scheme 2

Table 1. The reaction of fluoroalkyl iodides (1) with imidazole anion (2).^a

$R_f CF_2 X$	Yield/% ^d					
[(1):(2)]	Additive ^b	T/h	Conversion/% ^c	(3) (m.p.)	(4)	Other
(1a) (1:3)		6	100	68.7 (147 °C)	23.5	
(1b) $(1:3)$		5	100	62.8 (137 °C)	20.3	
(1b) $(1:3)$	Hydroquinone	5	57.2	68.5°	21.5°	
(1b) $(1:3)$	DÂE ^b	10	50	43.0	17.2	21.3e
(1b) (1:2)	-	7	80.4	70.7°	29.3°	
(1b) (1:2)	in the dark	10	50.3	86.2 ^c	5.0°	
(1b) (1:2)	p-DNB	7	63.7	79.2°	18.5°	
(1b) (1:1)		13	46.5	81.8°	18.2°	
(1c) $(1:3)$		3	100	62.5 (136 °C)	18.3	
(1d) (1:4)		2.5	100	58.8 (158 °C)	20.3	
(1e) (1:3)	-	7	95	52.3 (154 °C)	22.8	8.5f
(1f) (1:3)		7	65.7	54.3	21.0	
(1g) (1:3)		12	58.2	52.0	22.8	

^a In DMF at 10 °C, traces of 2-fluoroalkyimidazoles and (5) were also observed. ^b 20 mol% of hydroquinone and *p*-dinitrobenzene (DNB) were used; DAE = diethyl ether; (1): DAE = 1:2. ^c Determined by ¹⁹F n.m.r. spectroscopy, based on fluoroalkyl halides. ^d Isolated yield unless noted otherwise; all the new compounds were identified by elemental analyses, ¹⁹F, ¹H n.m.r., i.r., and mass spectroscopy; ^c 3-(6-Chloro-2,2,3,3,4,4,5,5,6,6-decafluorohexyl)-4-methylenetetrahydrofuran. ^f 1,6-Di-imidazol-4-ylperfluorohexane.

decreased, to 50%, when the reaction was carried out in the dark rather than in laboratory light (80%, see Table 1). Furthermore, the addition of DAE resulted in the formation of the tetrahydrofuran derivative.⁵ All these results in addition to the known resistance to displacement of halides from perfluoroalkyl halides by $S_{\rm N}1$ or $S_{\rm N}2$ processes^{5,6} and the possible ability of imidazole to act as an electron donor in basic media under irradiation,⁷ indicate the possibility of an $S_{\rm RN}1$ mechanism (Scheme 2).

We thank Professor Wei-Yun Huang for encouragement and the Chinese National Science Foundation for financial support.

Received, 24th February 1987; Com. 248

References

1 R. Filler, J. Fluorine Chem., 1986, 33, 361, and references therein.

- D. Cantacuzene, C. Wakselman, and R. Dorme, J. Chem. Soc., Perkin Trans. 1, 1977, 1365; Y. Kobayashi, I. Kumadaki, A. Ohsawa, S. Murakami, and T. Nakano, Chem. Pharm. Bull., 1978, 26, 1247; M. D. Owen, R. G. Plevey, and J. C. Tatlow, J. Fluorine Chem., 1981, 17, 179; H. Kimoto, S. Fujii, and L. A. Cohen, J. Org. Chem., 1982, 47, 2867; S. Fujii, Y. Maki, H. Kimoto, and L. A. Cohen, J. Fluorine Chem., 1987, 35, 437.
- 3 Q. Y. Chen and Z. M. Qiu, Youji Huaxue, 1987, 44.
- 4 K. Hofmann in 'The Chemistry of Heterocyclic Compounds,' ed. A. Weissberger, Interscience Publishers, Inc., N.Y., 1953, Vol. 6, part 1; M. Sainsbury and R. S. Theobald in 'Rodd's Chemistry of Carbon Compounds (2nd ed.),' eds. S. Coffey and M. F. Ansell, Elsevier, 1986, vol. 4, part C, pp. 119-196.
- 5 Q. Y. Chen and Z. M. Qiu, J. Fluorine Chem., 1986, 31, 301; 1987, 35, 343.
- 6 C. B. Smart, in 'The Chemistry of Halides, Pseudohalides and Azides,' eds. S. Patai and Z. Rapoport, Wiley, New York, 1983, Suppl. D, Part 1, p. 603.
- 7 A. T. O. M. Adebayo, W. R. Bowman, and W. G. Smart, *Tetrahedron Lett.*, 1986, 27, 1943; R. Beugelmans and A. Lechevallier, *ibid.*, 1986, 27, 6209.